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Motivation

Reversed central magnetic shear configurations are 
particularly attractive for advanced tokamak reactors 

-- predicted improved confinement and stability 
-- compatible with bootstrap current profile shape

    Mounting experimental confirmation of the 
          advantages of reversed magnetic shear from a 

    number of machines.

Reversed magnetic shear can:
 •  increase TFTR stability limits
 •  increase the reactivity of TFTR plasmas
 •  extend the range of physics studies for
   -- α-physics 
   -- transport and stability of burning plasmas
   -- integration of DT and advanced tokamak physics

Outline
•  Formation
•  Transport
•  MHD Stability
•  Future Directions
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A Wide Range of Reversed Magnetic Shear 
Configurations Have Been Produced

TFTR

•  Curves from VMEC free-boundary fit 
    to MSE, magnetics data,  and kinetic pressure profile

•  Have obtained  1.8 ≤ qmin ≤ 3.3 so far,   rmin/a ≤ 0.5 
   during  IP  flat-top

•  Configuration is reliably obtainable, routinely available.
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Reversed Shear made by 
NB Heating & CD during IP Ramp
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•  Plasma is initiated at full size
-- force current to diffuse maximum distance

•  Scenario is robust, reproducible

•  qmin, rmin, and q(0) can be controlled by the 
prelude NBI timing, co/counter-mix, the IP ramp-
rate and final IP.

see S. Batha, 2F.02
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•  Observed   p(0)/<p>   range from ~ 6.5 to ~ 8

•  Lpi  ~  ion banana width due to high central q  
⇒ ion orbit squeezing effects

•  Calculated bootstrap current  ~80% of total IP
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Core Confinement is Strongly Improved 
after Transition to ERS 
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p(0)/<p> ~ 8



Two Confinement Regimes Observed 
with Reversed Shear

TFTR
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•  Two confinement regimes observed with reversed shear:
(A)  similar to supershots, convection dominated core, 

               low χi, χe

(B)  sudden transition to reduced particle transport 
and thermal transport  ERS mode  
(Enhanced Reversed Shear)

•  Transition appears to require balanced NBI  > 16 MW
may have dependence on co/ctr mix of NBI
may have dependence on  qmin or  rmin

Reversed Shear

Enhanced
Reversed Shear
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χi << χi
neo  may be due to 

LPi  ~ Banana Width !

Likely indicates that ion orbit squeezing is important!

Improved Neoclassical calculations under development:

•  orbit squeezing effects via recent papers by 
   Shaing and Hazeltine;  Hinton and Kim

   ⇒ modification of Hirshman-Sigmar equations

•  comparison with Full Torus Gyrokinetic Neoclassical   
   Simulation  (Z. Lin,  W. Tang,  W. Lee)
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The Transition Threshold is 

Not Just a Function of Power
TFTR

•  All cases have near-balanced injection in high-power phase

•  Lower power correlates with later transition
perhaps due to lower q min?

•  Lowest power transition observed:  P NB = 16MW
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Electron Particle Loss is a Small Fraction of 

the Fueling  inside Reversal Surface
TFTR

•  Volume integrated electron continuity equation terms

    Indicates sources inside a flux surface and losses through a    
    flux surface

•  Source is dominated by beam fueling inside r/a ~ 0.9
   Wall source magnitude is measured by Hα array
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De  is  Sharply Reduced after Transition
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•  Γ ≡  − D  ∇n      flux balance "effective" diffusivity

•  full neoclassical flux calculation including 
   off-diagonal terms   (Houlberg, Shaing, & Hirshman)

•  low diffusivity or large pinch?
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Ion Energy Loss is a Small Fraction 

of the Heating Power
TFTR

E
ne

rg
y 

So
ur

ce
/L

os
s 

R
at

e 
 (

M
W

)

Volume integrated 
radial energy balances.

Energy sources inside a 
flux surface

Losses through a surface.
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Core Turbulence Dramatically Reduced
in ERS

•  change in fluctuation profile appears coincident with transition
•  preliminary BES analysis indicates core fluctuations levels are 
reduced to ≤ 0.2%, substantially less than with monotonic q(r).
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•   High central density can be maintainedwith  ~5 MW of NBI

•  After step down of PNB, density outside rmin decays 
   density peaking rises

•  Reverse transition at ~3.1 sec ?

ERS

Reversed Shear

Density Sustainment after High Power Phase
Confirms Low De



TFTR

Hydrogenic transport is reduced in ERS
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•   Small Tritium puff in conjunction with neutron collimator
     measurements is used to study hydrogenic transport

•  Core ion diffusivity is reduced in ERS, but similar outside
    reversed shear region.
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Core Hydrogenic Diffusivity is Significantly Reduced
in ERS Plasmas
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Tritium transport determined from response of 12 channel
neutron collimator to a tritium gas puff.

For r < 0.6 m, convective velocity consistent with 
neoclassical theory.

In ERS mode, particle flux in RS region is consistent
with neoclassical predictions.



Possible Transition Mechanism: ∇p driven 
increase of shearing rates and decrease of 

instability growth rates

1. ExB flow shear stabilization, generated by  ∇p 
(Synakowski, 2F12; Diamond  7Q21 )

2. Increase in fraction of trapped particles with 
favorable drift precession from  
high α =  - q2 Rdβ/dr due to strong
Shafranov shift (M. Beer, 4Q08)

3. Peaking of density profile decreases ITG drive 
(S. Parker,  8IB3 and  G. Rewoldt, 9P04)
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•  Consistent with variation observed via Abel-inverted tangential 
   visible-bremstrahlung array

-- see A. Ramsey, 9P.38

•  Nonlinear gyrofluid simulations indicate that residual fluctuations
    may drive outward carbon flux that balances neoclassical pinch
              -- see M. Beer,  4Q.08
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RS Plasmas are Robustly Stable to High-n Modes in 
Plasma Core

• Margin against high-n ballooning > factor of 2
   at all radii. Robustly stable in core.

•  This robust stability region extends to 80% of minor 
   radius in some plasmas.

•  Due to profile differences, some ERS plasmas can be 
near the ballooning limit outside rmin
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Observed Saturated MHD Activity is Benign

•  Observed on both RS and ERS plasmas
   No ERS specific MHD activity has been observed.

•  May be resistive-kink mode?   --  see T. Hender  9P.07

•  No tearing-like MHD  activity  observed  in plasma core.  
No sign of neoclassical tearing modes observed with 
monotonic q(r).

•  Off-axis "sawteeth" are observed after the high-power 
phase, with m/n = 2/1 precursors.  
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Disruption Precurser in Reversed Shear is 
n=1 Ideal-like Mode

•  Measured Te evolution from ECE polychromator
Similar measurements by reflectometer

• Disruption occured with
βN* = 3.5,  βN = 1.7,  β(0) = 5.4 %

• Maximum achieved with ERS:
βN* = 3.8,  βN = 2.0, without disruption

     In contrast, for monotonic q(r) and similar pressure 
     profiles, the βN  limit is observed to be  ~ 1.3 .
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Theory: Stability is limited by  n=1 Infernal Mode
TFTR

• PEST calculates n=1 infernal mode becomes unstable at 
approximate βN of disruption.

• Resistive stability agrees with ideal calculation at 
experimental Lundquist number S~109.

• Resistive calculation indicates weak persistent n=2 
and n=1 modes, observed in experiment.

--  see:  T. Hender 9P.07;  J. Manickam 9P.08;
       M. Phillips 9Q.02;  M. Hughes 9Q.01
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Future Directions

•  Optimization and control of MHD stability

-- Theory predicts increased βN*  limits for 
    increased rmin

--  Need to control q-profile evolution to avoid
     unstable equilibria at high β 
     (e.g. ~ integral qmin)

•  Understand transition and transport in new regime

--  scaling of transition and transport
--  control of barrier location
--  ash transport

•  Integrate DT and Advanced Tokamak physics

--  α heating dynamics and profile modifications
--  α stability with reversed shear

TFTR



20 MW of Fusion Power is a 
Reasonable Goal

°  βN=2 calculated stable for all n (PEST) in this regime, and achieved      
    experimentally

•  Final ne profile from equilibrium solution using observed De (with floor)
   Te, Ti and equilibrium evolved using observed χe, χi (with floor), 
   Zeff=1.5

•  Temperatures do not come to steady state!     Q(0) > 5  when Q(a) ~ 1

CAUTION:  this extrapolation is based on empirical transport coefficients 
in a new confinement regime, with no scaling information available. 
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Conclusions

•  Reversed magnetic shear configurations can be easily 
produced and studied in present experiments

•  The new ERS regime offers 
--  extremely low core transport and turbulence

--  new insight into the causes and limits of 
     transport, mechanisms for transport barriers

--  new possibilities for reactor design:
       Low De:  pellet or low-energy beam fueling?

 Low χi:   α-channeling?   advanced fuels?

•  Reversed magnetic shear configurations have 
    higher stability limits that monotonic q-profiles
    for similar pressure profiles

•  Reversed shear and ERS provide a path for TFTR to 
   explore strong alpha-heating and its interaction with 
   advanced tokamak configurations.

TFTR


